Refine your search:     
Report No.
 - 
Search Results: Records 1-2 displayed on this page of 2
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Feasibility study of tritium recoil barrier for neutron reflectors

Ishitsuka, Etsuo; Sakamoto, Naoki*

Physical Sciences and Technology, 6(2), p.60 - 63, 2019/12

Tritium release into the primary coolant of the research and test reactors during operation had been studied, and it is found that the recoil release from chain reaction of $$^{9}$$Be is dominant. To reduce tritium concentration of the primary coolant, feasibility study of the tritium recoil barrier for the beryllium neutron reflectors was carried out, and the tritium recoils of various materials were calculated by PHITS. From these calculation results, it is clear that the thickness of tritium recoil barrier depends on the material and 20$$sim$$40 $$mu$$m is required for three orders reduction.

Journal Articles

Design of the ITER tritium plant, confinement and detritiation facilities

Yoshida, Hiroshi; Glugla, M.*; Hayashi, Takumi; L$"a$sser, R.*; Murdoch, D.*; Nishi, Masataka; Haange, R.*

Fusion Engineering and Design, 61-62, p.513 - 523, 2002/11

 Times Cited Count:28 Percentile:84.11(Nuclear Science & Technology)

ITER tritium plant is composed of tokamak fuel cycle systems, tritium confinement and detritation systems. The tokamak fuel cycle systems, composed of various tritium sumsystems such as vacuum vessel cleaning gas processing, tokamak exhaust processing, hydrogen isotope separation, fuel storage, mixing and delivery, and external tritium receiving and long-term storage, has been designed to meet not only ITER operation scenarios but safety requirements (minimization of equipment tritium inventory and reduction of environmental tritium release at different off-normal events and accident scenarios). Multiple confinement design was employed because tritium easily permeates through metals (at $$>$$ 150 $$^{circ}$$C) and plastics (at ambient temperature) and mixed with moisture in room air. That is, tritium process equipment and piping are designed to be the primary confinement barrier, and the process equipments (tritium inventory $$>$$ 1 g) are surrounded by the secondary confinement barrier such as a glovebox. Tritium process rooms, which contains these facilities, form the tertiary confinement barrier, and equipped with emergency isolation valves in the heating ventillation and air conditioning ducts as well as atmosphere detritiation systems. This confinement approach has been applied to tokamak building, tritium building, and hotcell and radwaste building.

2 (Records 1-2 displayed on this page)
  • 1